您的位置:网站首页 > 电器维修资料网 > 正文 >
电感式DC/DC转换器
来源: 日期:2013-11-17 19:40:31 人气:标签:
1. 工作原理(BUCK)
上图降压转换器 基本的电路:是利用MOSFET开关闭合时在电感器中储能,并产生电流。当开关断开时,贮存的电感器能量通过二极管输出给负载。 输出电压值与占空比(开关开启时间与整个开关周期之间的比 )有关。
2. 整流二极管的选择
该二极管必须具有与输出电压相等或更大的反向额定电压。其平均额定电流必须比所期望的 大负载电流大得多。其正向电压降必须很低,以避免二极管导通时有过大的损耗。此外,因为MOSFET工作于高频开关模式,所以需要二极管具有从导通状态到非导通状态时,很快恢复。反应速度越快,DC/DC的效率越高。
肖特基二极管(而非传统的超快速二极管)具有更低的正向电压降和极佳的反向恢复特性。
3. 同步整流技术
同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
当输出电压降低时,二极管的正向电压的影响很重要,它将降低转换器的效率。物理特性的极限使二极管的正向电压降难以降低到0.3V以下。相反,可以通过加大硅片的尺寸或并行连接分离器件来降低MOSFET的导通电阻RDS(ON)。因此,在给定的电流下,使用一个MOSFET来替代二极管可以获得比二极管小很多的电压降。
在同步降压转换器中,通过用两个低端的MOSFET来替换肖特基二极管可以提高效率(图1b)。这两个MOSFET必须以互补的模式驱动,在它们的导通间隙之间有一个很小的死区时间(dead time),以避免同时导通。同步FET工作在第三象限,因为电流从源极流到漏极。
4. 电感器的选择
随着开关的打开和闭合,升压电感器会经历电流纹波。一般建议纹波电流应低于平均电感电流的20%。电感过大将要求使用大得多的电感器,而电感太小将引起更大的开关电流,特别在输出电容器中,而这又要求更大的电容器。
电感值的选择取决于期望的纹波电流。如等式1所示,较高的VIN或VOUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。
由公式可以得出:
(1) 开关频率越高,所需的电感值就可以减小;
(2) 电感值增大,可以降低纹波电流和磁芯磁滞损耗。但电感值的增大,电感尺寸也相应的增大,电流变化速度也减慢。
为了避免电感饱和,电感的额定电流值应该是转换器 大输出电流值与电感纹波电流之和。
电感的直流电阻(RDC),取决于所采用的材料或贴片电感器的构造类型,在室温条件下通过简单的电阻测量即可获得。RDC的大小直接影响线圈的温度上升。因此,应当避免长时间超过电流额定值。
线圈的总耗损包括RDC中的耗损和下列与频率相关联的耗损分量:磁芯材料损耗(磁滞损耗、涡流损耗);趋肤效应造成的导体中的其他耗损(高频电流位移);相邻绕组的磁场损耗(邻近效应);辐射损耗。
将上述所有耗损分量组合在一起构成串联耗损电阻(Rs)。耗损电阻主要用于定义电感器的品质。然而,我们无法用数学方法确定Rs,一般采用阻抗分析仪在整个频率范围内对电感器进行测量。
电感线圈电抗(XL)与总电阻(Rs)之比称为品质因素Q,参见公式(2)。品质因素被定义为电感器的品质参数。损耗越高,电感器作为储能元件的品质就越低。
品质—频率图可以帮助选择针对特定应用的 佳电感器结构。如测量结果图2所示,可以将损耗 低(Q值 高)的工作范围定义为一直延伸到品质拐点。如果在更高的频率使用电感器,损耗会剧增(Q降低)。
良好设计的电感器效率降低微乎其微。不同的磁芯材料和形状可以相应改变电感器的大小/电流和价格/电流关系。采用铁氧体材料的屏蔽电感器尺寸较小,而且不辐射太多能量。选择何种电感器往往取决于价格与尺寸要求以及相应的辐射场/EMI要求。
5. 输入电容的选择
因为buck有跳跃的输入电流,需要低ESR的输入电容,实现 好的输入电压滤波。输入电容值必须足够大,来稳定重负载时的输入电压。如果用陶瓷输出电容,电容RMS纹波电容范围应该满足应用需求。
陶瓷电容具有低ESR值,表现出良好的特性。并且与钽电容相比,陶瓷电容对瞬时电压不敏感。
6. 输出电容的选择
输出电容器的有效串联电阻(ESR)和电感器值会直接影响输出纹波电压。利用电感器纹波电流((IL)和输出电容器的ESR可以简单地估测输出纹波电压。
输出电压纹波是由输出电容的ESR引起的电压值,和由输出电容冲放电引起的电压纹波之和
有些厂家的DC/DC产品的内部由补偿环路,以实现 佳的瞬态响应和环路稳定性。当然,内部补偿能够理想地支持一系列工作条件,而且能够敏感地响应输出电容器参数变化。
7. BOOST 与 BUCK的拓扑结构
如上图,BOOST 与 BUCK电路结构不一样, Boost 电路是电感在输入电源与升压整流管之间, 开关管接电源地. BUCK 是电感在开关管与出电源之间,续流二级管反向接开关管与电源地.
【看看这篇文章在百度的收录情况】
相关文章
- 上一篇: DC-DC转换器相关知识
- 下一篇: 电荷泵的工作原理